| 
 | 
 | 
Adams' method is a numerical Method for solving linear First-Order Ordinary Differential Equations of the form
| (1) | 
| (2) | 
| (3) | 
| (4) | 
![]()  | 
(5) | ||
![]()  | 
(6) | ||
![]()  | 
(7) | 
For first-order interpolation, the method proceeds by iterating the expression
| (8) | 
| (9) | 
| 
 | 
|
| 
 | 
(10) | 
See also Gill's Method, Milne's Method, Predictor-Corrector Methods, Runge-Kutta Method
References
Abramowitz, M. and Stegun, C. A. (Eds.).
  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
  New York: Dover, p. 896, 1972.
 
Beyer, W. H.  CRC Standard Mathematical Tables, 28th ed.  Boca Raton, FL: CRC Press, p. 455, 1987.
 
Kármán, T. von and Biot, M. A.  Mathematical Methods in Engineering: An Introduction to the
  Mathematical Treatment of Engineering Problems.  New York: McGraw-Hill, pp. 14-20, 1940.
 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T.
  Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed.  Cambridge, England: Cambridge
  University Press, p. 741, 1992.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein