| 
 | 
 | 
A modified Miller's Primality Test which gives a guarantee of Primality or
Compositeness.  The Algorithm's running time for a number 
 has been proved to be
as 
 for some 
.  It was simplified by Cohen and Lenstra (1984), implemented by
Cohen and Lenstra (1987), and subsequently optimized by Bosma and van der Hulst (1990).
References
Adleman, L. M.; Pomerance, C.; and Rumely, R. S.  ``On Distinguishing Prime Numbers from Composite Number.''
  Ann. Math. 117, 173-206, 1983.
 
Bosma, W. and van der Hulst, M.-P.  ``Faster Primality Testing.''  In Advances in Cryptology, Proc. Eurocrypt
  '89, Houthalen, April 10-13, 1989 (Ed. J.-J. Quisquater).  New York: Springer-Verlag, 652-656, 1990.
 
Brillhart, J.; Lehmer, D. H.; Selfridge, J.; Wagstaff, S. S. Jr.; and Tuckerman, B.
  Factorizations of  
Cohen, H. and Lenstra, A. K.  ``Primality Testing and Jacobi Sums.''  Math. Comput. 42, 297-330, 1984.
 
Cohen, H. and Lenstra, A. K.  ``Implementation of a New Primality Test.''  Math. Comput. 48, 103-121,
  1987.
 
Mihailescu, P.  ``A Primality Test Using Cyclotomic Extensions.''  In Applied Algebra, Algebraic Algorithms
  and Error-Correcting Codes (Proc. AAECC-6, Rome, July 1988).  New York: Springer-Verlag, pp. 310-323, 1989.
 
, 
, 
 Up to High Powers, rev. ed.
  Providence, RI: Amer. Math. Soc., pp. lxxxiv-lxxxv, 1988.