Defined as the limit of a class of Delta Sequences.  Sometimes called the Impulse Symbol.
The most commonly used (equivalent) definitions are
![\begin{displaymath}
\delta(x) \equiv \lim_{n\to \infty} {1\over 2\pi} {\sin[(n+{\textstyle{1\over 2}})x]\over \sin({\textstyle{1\over 2}}x)}
\end{displaymath}](d1_424.gif)  | 
(1) | 
 
(the so-called Dirichlet Kernel) and
where 
 is the Fourier Transform.  Some identities include
  | 
(5) | 
 
for 
,
  | 
(6) | 
 
where 
 is any Positive number, and
  | 
(7) | 
 
  | 
(8) | 
 
  | 
(9) | 
 
where 
 denotes Convolution,
  | 
(10) | 
 
  | 
(11) | 
 
  | 
(12) | 
 
  | 
(13) | 
 
(13) can be established using Integration by Parts as follows:
Additional identities are
  | 
(15) | 
 
![\begin{displaymath}
\delta(x^2-a^2)={1\over 2\vert a\vert} [\delta(x+a)+\delta(x-a)]
\end{displaymath}](d1_445.gif)  | 
(16) | 
 
![\begin{displaymath}
\delta[g(x)] = \sum_i {\delta(x-x_i)\over\vert g'(x_i)\vert},
\end{displaymath}](d1_446.gif)  | 
(17) | 
 
where the 
s are the Roots of 
.  For example, examine 
![\begin{displaymath}
\delta(x^2+x-2)=\delta[(x-1)(x+2)].
\end{displaymath}](d1_448.gif)  | 
(18) | 
 
Then 
, so 
 and 
, and we have 
  | 
(19) | 
 
A Fourier Series expansion of 
 gives
  | 
(20) | 
 
  | 
(21) | 
 
so
The Fourier Transform of the delta function is
![\begin{displaymath}
{\mathcal F}[\delta(x-x_0)] = \int_{-\infty}^\infty e^{-2\pi ikx}\delta(x-x_0)\,dx = e^{-2\pi ikx_0}.
\end{displaymath}](d1_459.gif)  | 
(23) | 
 
Delta functions can also be defined in 2-D, so that in 2-D Cartesian Coordinates
  | 
(24) | 
 
and in 3-D, so that in 3-D Cartesian Coordinates
  | 
(25) | 
 
in Cylindrical Coordinates
  | 
(26) | 
 
and in Spherical Coordinates,
  | 
(27) | 
 
A series expansion in Cylindrical Coordinates gives
 
 | 
 | 
 
 | 
 | 
| 
 
  | 
(28) | 
The delta function also obeys the so-called Sifting Property
  | 
(29) | 
 
See also Delta Sequence, Doublet Function, Fourier Transform--Delta Function
References
Arfken, G.  Mathematical Methods for Physicists, 3rd ed.  Orlando, FL: Academic Press, pp. 481-485, 1985.
Spanier, J. and Oldham, K. B.  ``The Dirac Delta Function 
.''
  Ch. 10 in An Atlas of Functions.  Washington, DC: Hemisphere, pp. 79-82, 1987.
© 1996-9 Eric W. Weisstein 
1999-05-24