Define the 
 matrices
where 
 are the Pauli Matrices, I is the Identity Matrix, 
, 2, 3, and
 is the matrix Direct Product.  Explicitly,
  | 
  | 
![$\displaystyle \left[\begin{array}{cccc}1 & 0 & 0 & 0\\  0 & 1 & 0 & 0\\  0 & 0 & 1 & 0\\  0 & 0 & 0 & 1\end{array}\right]$](d2_11.gif)  | 
(3) | 
  | 
  | 
![$\displaystyle \left[\begin{array}{cccc}0 & 1 & 0 & 0\\  1 & 0 & 0 & 0\\  0 & 0 & 0 & 1\\  0 & 0 & 1 & 0\end{array}\right]$](d2_13.gif)  | 
(4) | 
  | 
  | 
![$\displaystyle \left[\begin{array}{cccc}0 & -i & 0 & 0\\  i & 0 & 0 & 0\\  0 & 0 & 0 & -i\\  0 & 0 & i & 0\end{array}\right]$](d2_15.gif)  | 
(5) | 
  | 
  | 
![$\displaystyle \left[\begin{array}{cccc}1 & 0 & 0 & 0\\  0 & -1 & 0 & 0\\  0 & 0 & 1 & 0\\  0 & 0 & 0 & -1\end{array}\right]$](d2_17.gif)  | 
(6) | 
  | 
  | 
![$\displaystyle \left[\begin{array}{cccc}0 & 0 & 1 & 0\\  0 & 0 & 0 & 1\\  1 & 0 & 0 & 0\\  0 & 1 & 0 & 0\end{array}\right]$](d2_19.gif)  | 
(7) | 
  | 
  | 
![$\displaystyle \left[\begin{array}{cccc}0 & 0 & -i & 0\\  0 & 0 & 0 & -i\\  i & 0 & 0 & 0\\  0 & i & 0 & 0\end{array}\right]$](d2_21.gif)  | 
(8) | 
  | 
  | 
![$\displaystyle \left[\begin{array}{cccc}1 & 0 & 0 & 0\\  0 & 1 & 0 & 0\\  0 & 0 & -1 & 0\\  0 & 0 & 0 & -1\end{array}\right].$](d2_23.gif)  | 
(9) | 
 
These matrices satisfy the anticommutation identities
  | 
(10) | 
 
  | 
(11) | 
 
where 
 is the Kronecker Delta, the commutation identity
![\begin{displaymath}[\sigma_i, \rho_j]=\sigma_i\rho_j-\rho_j\sigma_i=0,
\end{displaymath}](d2_27.gif)  | 
(12) | 
 
and are cyclic under permutations of indices
  | 
(13) | 
 
  | 
(14) | 
 
A total of 16 Dirac matrices can be defined via
  | 
(15) | 
 
for 
, 1, 2, 3 and where 
.  These matrices satisfy
- 1. 
, where 
 is the Determinant,
 - 2. 
,
 - 3. 
, making them Hermitian, and therefore unitary,
 - 4. 
, except 
,
 - 5. Any two 
 multiplied together yield a Dirac matrix to within a multiplicative factor of 
 or 
,
 - 6. The 
 are linearly independent,
 - 7. The 
 form a complete set, i.e., any 
 constant matrix may be written as
  | 
(16) | 
 
where the 
 are real or complex and are given by
  | 
(17) | 
  
(Arfken 1985).
Dirac's original matrices were written 
 and were defined by
for 
, 2, 3, giving
The additional matrix
![\begin{displaymath}
\alpha_5={\hbox{\sf E}}_{20}=\rho_2=\left[{\matrix{0 & 0 & -...
...r 0 & 0 & 0 & -i\cr i & 0 & 0 & 0\cr 0 & i & 0 & 0\cr}}\right]
\end{displaymath}](d2_57.gif)  | 
(24) | 
 
is sometimes defined.  Other sets of Dirac matrices are sometimes defined as
and 
  | 
(28) | 
 
for 
, 2, 3 (Arfken 1985) and
for 
, 2, 3 (Goldstein 1980).
Any of the 15 Dirac matrices (excluding the identity matrix) commute with eight Dirac matrices and anticommute with the
other eight.  Let 
, then
  | 
(31) | 
 
In addition
![\begin{displaymath}
\left[{\matrix{\alpha_1\cr \alpha_2\cr \alpha_3\cr}}\right]\...
...\matrix{\alpha_1\cr \alpha_2\cr \alpha_3\cr}}\right]=2i\sigma.
\end{displaymath}](d2_71.gif)  | 
(32) | 
 
The products of 
 and 
 satisfy
  | 
(33) | 
 
  | 
(34) | 
 
The 16 Dirac matrices form six anticommuting sets of five matrices each:
- 1. 
, 
, 
, 
, 
,
 - 2. 
, 
, 
, 
, 
,
 - 3. 
, 
, 
, 
, 
,
 - 4. 
, 
, 
, 
, 
,
 - 5. 
, 
, 
, 
, 
,
 - 6. 
, 
, 
, 
, 
.
 
See also Pauli Matrices
References
Arfken, G.  Mathematical Methods for Physicists, 3rd ed.  Orlando, FL: Academic Press, pp. 211-213, 1985.
Goldstein, H.  Classical Mechanics, 2nd ed.  Reading, MA: Addison-Wesley, p. 580, 1980.
© 1996-9 Eric W. Weisstein 
1999-05-24