The 
 function is defined by the integral
  | 
(1) | 
 
and is given by the Mathematica
 (Wolfram Research, Champaign, IL) function ExpIntegralE[n,x].
Defining 
 so that 
,
  | 
(2) | 
 
  | 
(3) | 
 
The function satisfies the Recurrence Relations
  | 
(4) | 
 
  | 
(5) | 
 
Equation (4) can be derived from
and (5) using integrating by parts, letting
  | 
(8) | 
 
  | 
(9) | 
 
gives
Solving (10) for 
 then gives (5).  An asymptotic expansion gives
  | 
(11) | 
 
so
![\begin{displaymath}
\mathop{\rm E}\nolimits_n(x) = {e^{-x}\over x} \left[{1 - {n\over x} + {n(n+1)\over x^2} + \ldots}\right].
\end{displaymath}](e_70.gif)  | 
(12) | 
 
The special case 
 gives
  | 
(13) | 
 
where 
 is the Exponential Integral, which is also equal to
  | 
(14) | 
 
where 
 is the Euler-Mascheroni Constant.
where 
 and 
 are the Cosine Integral and Sine Integral.
See also Cosine Integral, Et-Function, Exponential Integral, Gompertz Constant,
Sine Integral
References
Abramowitz, M. and Stegun, C. A. (Eds.).  ``Exponential Integral and Related Functions.''  Ch. 5 in
  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
  New York: Dover, pp. 227-233, 1972.
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T.  ``Exponential Integrals.''  §6.3 in
  Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed.  Cambridge, England:
  Cambridge University Press, pp. 215-219, 1992.
Spanier, J. and Oldham, K. B.  ``The Exponential Integral Ei(
) and Related Functions.''
  Ch. 37 in An Atlas of Functions.  Washington, DC: Hemisphere, pp. 351-360, 1987.
© 1996-9 Eric W. Weisstein 
1999-05-25