| 
 | 
 | 
An Algorithm for finding the Greatest Common Divisor of two numbers 
 and 
, also called Euclid's
algorithm.  It is an example of a P-Problem whose time complexity is bounded by a quadratic function of the
length of the input values (Banach and Shallit).  Let 
, then find a number 
 which Divides
both 
 and 
 (so that 
 and 
), then 
 also Divides 
 since
| (1) | 
| (2) | 
| (3) | |||
| (4) | |||
| (5) | |||
| (6) | |||
| (7) | 
| (8) | 
| (9) | 
| Quotient | |
| 1 | 41.5 | 
| 2 | 17.0 | 
| 3 | 9.3 | 
For details, see Uspensky and Heaslet (1939) or Knuth (1973).  Let 
 be the number of divisions required to
compute 
 using the Euclidean algorithm, and define 
 if 
.  Then
| (10) | 
![]()  | 
(11) | ||
![]()  | 
(12) | ||
![]()  | 
(13) | 
![]()  | 
(14) | 
| (15) | 
| (16) | 
There exist 22 Quadratic Fields in which there is a Euclidean algorithm (Inkeri 1947).
See also Ferguson-Forcade Algorithm
References
Bach, E. and Shallit, J.  Algorithmic Number Theory, Vol. 1: Efficient Algorithms.  Cambridge, MA: MIT Press, 1996.
 
Courant, R. and Robbins, H.  ``The Euclidean Algorithm.''  §2.4 in Supplement to Ch. 1 in
  What is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed.
  Oxford, England: Oxford University Press, pp. 42-51, 1996.
 
Dunham, W.  Journey Through Genius: The Great Theorems of Mathematics.  New York: Wiley, pp. 69-70, 1990.
 
Finch, S.  ``Favorite Mathematical Constants.''  http://www.mathsoft.com/asolve/constant/porter/porter.html
 
Inkeri, K.  ``Über den Euklidischen Algorithmus in quadratischen Zahlkörpern.''
  Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys. 1947, 1-35, 1947.
 
Knuth, D. E.  The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 2nd ed.  Reading, MA: Addison-Wesley, 1973.
 
Knuth, D. E.  The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 2nd ed.  Reading, MA: Addison-Wesley, 1981.
 
Norton, G. H.  ``On the Asymptotic Analysis of the Euclidean Algorithm.''  J. Symb. Comput. 10, 53-58, 1990.
 
Porter, J. W.  ``On a Theorem of Heilbronn.'' Mathematika 22, 20-28, 1975.
 
Uspensky, J. V. and Heaslet, M. A.  Elementary Number Theory.  New York: McGraw-Hill, 1939.
 
Wagon, S.  ``The Ancient and Modern Euclidean Algorithm'' and ``The Extended Euclidean Algorithm.''  §8.1 and 8.2
  in Mathematica in Action.  New York: W. H. Freeman, pp. 247-252 and 252-256, 1991.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein