According to Euler's Rotation Theorem, any Rotation may be described using three Angles. If
the Rotations are written in terms of Rotation Matrices B, C, and D, 
then a general Rotation A can be written as
  | 
(1) | 
 
The three angles giving the three rotation matrices are called Euler angles.  There are several conventions for Euler angles,
depending on the axes about which the rotations are carried out.  Write the Matrix A as
![\begin{displaymath}
{\hbox{\sf A}}\equiv \left[{\matrix{
a_{11} & a_{12} & a_{13...
...21} & a_{22} & a_{23}\cr
a_{31} & a_{32} & a_{33}\cr}}\right].
\end{displaymath}](e_1911.gif)  | 
(2) | 
 
In the so-called ``
-convention,'' illustrated above,
so
To obtain the components of the Angular Velocity 
 in the body axes, note that for a Matrix
![\begin{displaymath}
{\hbox{\sf A}}\equiv \left[{\matrix{{\bf A}_1 & {\bf A}_2 & {\bf A}_3\cr}}\right],
\end{displaymath}](e_1936.gif)  | 
(6) | 
 
it is true that
Now, 
 corresponds to rotation about the 
 axis, so look at the 
 component of 
,
![\begin{displaymath}
\boldsymbol{\omega}_\phi = {\bf A}_1\omega_z = \left[{\matri...
...theta\cr \cos\psi\sin\theta\cr\cos \theta\cr}}\right]\dot\phi.
\end{displaymath}](e_1942.gif)  | 
(9) | 
 
The line of nodes corresponds to a rotation by 
 about the 
-axis, so look at the 
 component of
,
![\begin{displaymath}
\boldsymbol{\omega}_\theta = {\bf B}_1\omega_\xi = {\bf B}_1...
...eft[{\matrix{\cos\psi\cr -\sin\psi\cr 0\cr}}\right]\dot\theta.
\end{displaymath}](e_1946.gif)  | 
(10) | 
 
Similarly, to find rotation by 
 about the remaining axis, look at the 
 component of 
,
![\begin{displaymath}
\boldsymbol{\omega}_\psi={\bf B}_3\omega_\psi = {\bf B}_3\dot\psi = \left[{\matrix{0\cr 0\cr 1\cr}}\right]\dot\psi.
\end{displaymath}](e_1949.gif)  | 
(11) | 
 
Combining the pieces gives
![\begin{displaymath}
\boldsymbol{\omega}=\left[{\matrix{\sin\psi\sin\theta \dot\p...
...dot\phi-\sin\psi\cr
\cos\theta \dot\phi+\dot\psi.\cr}}\right]
\end{displaymath}](e_1950.gif)  | 
(12) | 
 
For more details, see Goldstein (1980, p. 176) and Landau and Lifschitz (1976, p. 111).
The 
-convention Euler angles are given in terms of the Cayley-Klein Parameters by
In the ``
-convention,''
  | 
(16) | 
 
  | 
(17) | 
 
Therefore,
  | 
(18) | 
 
  | 
(19) | 
 
  | 
(20) | 
 
  | 
(21) | 
 
and A is given by
In the ``
'' (pitch-roll-yaw) convention, 
 is pitch, 
 
 is 
roll, 
 and 
 is yaw. 
and A is given by
A set of parameters sometimes used instead of angles are the Euler Parameters 
, 
, 
 and 
,
defined by
Using Euler Parameters (which are Quaternions), an arbitrary Rotation Matrix can be 
described by
(Goldstein 1960, p. 153).
If the coordinates of two pairs of 
 points 
 and 
 are known, one rotated with respect to the other,
then the Euler rotation matrix can be obtained in a straightforward manner using Least Squares Fitting.  Write the
points as arrays of vectors, so
![\begin{displaymath}
\left[{\matrix{{\bf x}_1' & \cdots & {\bf x}_n'\cr}}\right] ...
... A}}\left[{\matrix{{\bf x}_1 & \cdots & {\bf x}_n\cr}}\right].
\end{displaymath}](e_2000.gif)  | 
(29) | 
 
Writing the arrays of vectors as matrices gives
  | 
(30) | 
 
  | 
(31) | 
 
and solving for 
 gives
  | 
(32) | 
 
However, we want the angles 
, 
, and 
, not their combinations contained in the Matrix
.  Therefore, write the 
 Matrix 
![\begin{displaymath}
{\hbox{\sf A}}=\left[{\matrix{
f_1(\theta,\phi,\psi) & f_2(\...
...i) & f_7(\theta,\phi,\psi) & f_9(\theta,\phi,\psi)\cr}}\right]
\end{displaymath}](e_2004.gif)  | 
(33) | 
 
as a 
 Vector
![\begin{displaymath}
{\bf f}=\left[{\matrix{f_1(\theta,\phi,\psi)\cr \vdots\cr f_9(\theta,\phi,\psi)\cr}}\right].
\end{displaymath}](e_2006.gif)  | 
(34) | 
 
Now set up the matrices
![\begin{displaymath}
\left[{\matrix{
\left.{\partial f_1\over\partial\theta}\righ...
...\left[{\matrix{d\theta\cr d\phi\cr d\psi\cr}}\right]=d{\bf f}.
\end{displaymath}](e_2007.gif)  | 
(35) | 
 
Using Nonlinear Least Squares Fitting then gives solutions which converge to 
.
See also Cayley-Klein Parameters, Euler Parameters, Euler's Rotation Theorem, 
Infinitesimal Rotation, Quaternion, Rotation, Rotation Matrix
References
Arfken, G.  Mathematical Methods for Physicists, 3rd ed.  Orlando, FL: Academic Press, pp. 198-200, 1985.
Goldstein, H.  ``The Euler Angles'' and ``Euler Angles in Alternate Conventions.''  §4-4 and Appendix B in 
  Classical Mechanics, 2nd ed.  Reading, MA: Addison-Wesley, pp. 143-148 and 606-610, 1980.
Landau, L. D. and Lifschitz, E. M. Mechanics, 3rd ed.  Oxford, England: Pergamon Press, 1976.
© 1996-9 Eric W. Weisstein 
1999-05-25