| 
 | 
 | 
The four parameters 
, 
, 
, and 
 describing a finite rotation about an arbitrary axis.  The
Euler parameters are defined by
![]()  | 
(1) | ||
![]()  | 
(2) | 
| (3) | 
Because Euler's Rotation Theorem states that an arbitrary rotation may be described by only three parameters, a
relationship must exist between these four quantities
| (4) | 
| (5) | 
| (6) | 
The Euler parameters may be given in terms of the Euler Angles by
| (7) | |||
| (8) | |||
| (9) | |||
| (10) | 
Using the Euler parameters, the Rotation Formula becomes
| (11) | 
![]()  | 
(12) | 
| (13) | 
| (14) | |||
| (15) | |||
| (16) | |||
| (17) | |||
| (18) | |||
| (19) | |||
| (20) | |||
| (21) | |||
| (22) | 
See also Euler Angles, Quaternion, Rotation Matrix
References
Arfken, G.  Mathematical Methods for Physicists, 3rd ed.  Orlando, FL: Academic Press, pp. 198-200, 1985.
 
Goldstein, H.  Classical Mechanics, 2nd ed.  Reading, MA: Addison-Wesley, 1980.
 
Landau, L. D. and Lifschitz, E. M.  Mechanics, 3rd ed.  Oxford, England: Pergamon Press, 1976.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein