| 
 | 
 | 
The number of Permutations of length 
 with 
 Runs, denoted
, 
, or 
.  The Eulerian numbers are given explicitly by the sum
![]()  | 
(1) | 
| (2) | |||
| (3) | 
| (4) | 
| (5) | 
The Eulerian numbers satisfy
![]()  | 
(6) | 
![]()  | 
(7) | 
See also Combination Lock, Euler Number, Euler's Triangle, Euler Zigzag Number, Polylogarithm, Sinc Function, Worpitzky's Identity, Z-Transform
References
Carlitz, L.  ``Eulerian Numbers and Polynomials.''  Math. Mag. 32, 247-260, 1959.
 
Foata, D. and Schützenberger, M.-P.  Théorie Géométrique des Polynômes Eulériens.  Berlin: Springer-Verlag, 1970.
 
Kimber, A. C.  ``Eulerian Numbers.''  Supplement to Encyclopedia of Statistical Sciences. (Eds. S. Kotz,
  N. L. Johnson, and C. B. Read).  New York: Wiley, pp. 59-60, 1989.
 
Salama, I. A. and Kupper, L. L.  ``A Geometric Interpretation for the Eulerian Numbers.''  Amer. Math. Monthly
  93, 51-52, 1986.
 
Sloane, N. J. A.  Sequence 
A008292
in ``The On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein