| 
 | 
 | 
Also known as the first Isogonic Center and the Torricelli Point.  In a given
Acute Triangle 
, the Fermat point is the point 
 which minimizes the sum of distances from 
, 
,
and 
,
| (1) | 
If all Angles of the Triangle are less than 120° (
), then the Fermat point is the
interior point 
 from which each side subtends an Angle of 120°, i.e.,
| (2) | 
| (3) | |||
| (4) | 
The Antipedal Triangle is Equilateral and has Area
| (5) | 
Given three Positive Real Numbers 
, the ``generalized'' Fermat point is the point 
 of a
given Acute Triangle 
 such that
| (6) | 
See also Isogonic Centers
References
Courant, R. and Robbins, H.  What is Mathematics?, 2nd ed.  Oxford, England: Oxford University Press, 1941.
 
Gallatly, W.  The Modern Geometry of the Triangle, 2nd ed.  London: Hodgson, p. 107, 1913.
 
Greenberg, I. and Robertello, R. A.  ``The Three Factory Problem.''  Math. Mag. 38, 67-72, 1965.
 
Honsberger, R.  Mathematical Gems I.  Washington, DC: Math. Assoc. Amer., pp. 24-34, 1973.
 
Johnson, R. A.  Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle.
  Boston, MA: Houghton Mifflin, pp. 221-222, 1929.
 
Kimberling, C.  ``Central Points and Central Lines in the Plane of a Triangle.''  Math. Mag. 67, p. 174, 1994.
 
Kimberling, C.  ``Fermat Point.''
http://cedar.evansville.edu/~ck6/tcenters/class/fermat.html.
 
Mowaffaq, H.  ``An Advanced Calculus Approach to Finding the Fermat Point.''  Math. Mag. 67, 29-34, 1994.
 
Pottage, J.  Geometrical Investigations.  Reading, MA: Addison-Wesley, 1983.
 
Spain, P. G.  ``The Fermat Point of a Triangle.''  Math. Mag. 69, 131-133, 1996.
 
Tong, J. and Chua, Y. S.  ``The Generalized Fermat's Point.''  Math. Mag. 68, 214-215, 1995.
 
van de Lindt, W. J.  ``A Geometrical Solution of the Three Factory Problem.''  Math. Mag. 39, 162-165, 1966.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein