| 
 | 
 | 
In his monumental treatise Disquisitiones Arithmeticae, Gauß 
 conjectured that the Class Number
 of an Imaginary quadratic field with Discriminant 
 tends to infinity with 
.  A proof was finally given by Heilbronn (1934), and Siegel (1936) showed that for
any 
, there exists a constant 
 such that
Goldfeld (1976) showed that if there exists a ``Weil curve'' whose associated Dirichlet L-Series has a zero of at least third order at 
, then for any 
, there exists an effectively computable
constant 
 such that
See also Class Number, Gauss's Class Number Problem, Heegner Number
References
Arno, S.; Robinson, M. L.; and Wheeler, F. S.  ``Imaginary Quadratic Fields with Small Odd Class Number.''
  http://www.math.uiuc.edu/Algebraic-Number-Theory/0009/.
 
Böcherer, S.  ``Das Gauß'sche Klassenzahlproblem.''  Mitt. Math. Ges. Hamburg 11, 565-589, 1988.
 
Gauss, C. F.  Disquisitiones Arithmeticae.  New Haven, CT: Yale University Press, 1966.
 
Goldfeld, D. M.  ``The Class Number of Quadratic Fields and the Conjectures of Birch and Swinnerton-Dyer.''
  Ann. Scuola Norm. Sup. Pisa 3, 623-663, 1976.
 
Gross, B. and Zaiger, D.  ``Points de Heegner et derivées de fonctions  
Heilbronn, H.  ``On the Class Number in Imaginary Quadratic Fields.''  Quart. J. Math. Oxford Ser. 25, 150-160, 1934.
 
Oesterlé, J.  ``Nombres de classes des corps quadratiques imaginaires.''  Astérique 121-122, 309-323, 1985.
 
Siegel, C. L.  ``Über die Klassenzahl quadratischer Zahlkörper.''  Acta. Arith. 1, 83-86, 1936.
 
.''  C. R. Acad. Sci. Paris 297, 85-87, 1983.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein