| 
 | 
 | 
A technically defined extension of the ordinary Determinant to ``higher dimensional''
Hypermatrices.  Cayley 
 (1845) originally coined the term, but subsequently used it to refer to an
Algebraic Invariant of a multilinear form.  The hyperdeterminant of the 
 Hypermatrix
 (for 
, 1) is given by
| 
 | 
|
| 
 | 
|
| 
 | 
|
| 
 | 
The above hyperdeterminant vanishes Iff the following system of equations in six unknowns has a nontrivial 
solution,
See also Determinant, Hypermatrix
References
Cayley, A.  ``On the Theory of Linear Transformations.''  Cambridge Math. J. 4, 193-209, 1845.
 
Gel'fand, I. M.; Kapranov, M. M.; and Zelevinsky, A. V.  ``Hyperdeterminants.''  Adv. Math. 96,
  226-263, 1992.
 
Schläfli, L.  ``Über die Resultante eine Systemes mehrerer algebraischer Gleichungen.'' 
  Denkschr. Kaiserl. Akad. Wiss., Math.-Naturwiss. Klasse 4, 1852.