| 
 | 
 | 
Also called Radau Quadrature (Chandrasekhar 1960).  A Gaussian Quadrature with Weighting Function 
in which the endpoints of the interval 
 are included in a total of 
 Abscissas, giving 
 free
abscissas.  Abscissas are symmetrical about the origin, and the general Formula is
![]()  | 
(1) | 
| (2) | |||
| (3) | 
| (4) | 
| (5) | 
| 3 | 0 | 1.33333 | 
| ± 1 | 0.333333 | |
| 4 | ± 0.447214 | 0.833333 | 
| ± 1 | 0.166667 | |
| 5 | 0 | 0.711111 | 
| ± 0.654654 | 0.544444 | |
| ± 1 | 0.100000 | |
| 6 | ± 0.285232 | 0.554858 | 
| ± 0.765055 | 0.378475 | |
| ± 1 | 0.0666667 | 
The Abscissas and weights can be computed analytically for small 
.
| 3 | 0 | 
 | 
| 
 | 
||
| 4 | 
 | 
 | 
| 
 | 
||
| 5 | 0 | 
 | 
| 
 | 
 | 
|
| 
 | 
See also Chebyshev Quadrature, Radau Quadrature
References
Abramowitz, M. and Stegun, C. A. (Eds.).
  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
  New York: Dover, pp. 888-890, 1972.
 
Beyer, W. H.  CRC Standard Mathematical Tables, 28th ed.  Boca Raton, FL: CRC Press, p. 465, 1987.
 
Chandrasekhar, S.  Radiative Transfer.  New York: Dover, pp. 63-64, 1960.
 
Hildebrand, F. B.  Introduction to Numerical Analysis.  New York: McGraw-Hill, pp. 343-345, 1956.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein