| 
 | 
 | 
N.B. A detailed on-line essay by S. Finch was the starting point for this entry.
Let 
 be a compact connected subset of 
-dimensional Euclidean Space.  Gross (1964) and Stadje (1981) proved 
that there is a unique Real Number 
 such that for all 
, 
, ..., 
, there exists 
 with
![]()  | 
(1) | 
| (2) | 
![]()  | 
(3) | 
| (4) | 
| (5) | 
| (6) | 
| (7) | 
| 
 | 
|
| 
 | 
|
![]()  | 
where 
 is the Gamma Function (Nikolas and Yost 1988). 
An unrelated quantity characteristic of a given Magic Square is also known as a Magic Constant.
References
Finch, S.  ``Favorite Mathematical Constants.''  http://www.mathsoft.com/asolve/constant/magic/magic.html
 
Cleary, J.; Morris, S. A.; and Yost, D.  ``Numerical Geometry--Numbers for Shapes.''  Amer. Math. Monthly 95, 260-275, 1986.
 
Croft, H. T.; Falconer, K. J.; and Guy, R. K.  Unsolved Problems in Geometry.  New York: Springer-Verlag, 1994.
 
Gross, O.  The Rendezvous Value of Metric Space.  Princeton, NJ: Princeton University Press, pp. 49-53, 1964.
 
Nikolas, P. and Yost, D.  ``The Average Distance Property for Subsets of Euclidean Space.''  Arch. Math. (Basel) 50, 380-384, 1988.
 
Stadje, W.  ``A Property of Compact Connected Spaces.''  Arch. Math. (Basel) 36, 275-280, 1981.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein