| 
 | 
 | 
Given Mertens Function defined by
![]()  | 
(1) | 
| (2) | 
| (3) | 
Mertens conjecture was proved false by Odlyzko and te Riele (1985). Their proof is indirect and does not produce a specific
counterexample, but it does show that
| (4) | 
| (5) | 
It is still not known if
| (6) | 
See also Mertens Function, Möbius Function, Riemann Hypothesis
References
Anderson, R. J.  ``On the Mertens Conjecture for Cusp Forms.''  Mathematika 26, 236-249, 1979.
 
Anderson, R. J. ``Corrigendum: `On the Mertens Conjecture for Cusp Forms.'''  Mathematika 27, 261, 1980.
 
Devlin, K.  ``The Mertens Conjecture.''  Irish Math. Soc. Bull. 17, 29-43, 1986.
 
Grupp, F.  ``On the Mertens Conjecture for Cusp Forms.''  Mathematika 29, 213-226, 1982.
 
Jurkat, W. and Peyerimhoff, A. ``A Constructive Approach to Kronecker Approximation and Its Application
  to the Mertens Conjecture.'' J. reine angew. Math. 286/287, 322-340, 1976.
 
Mertens, F.  ``Über eine zahlentheoretische Funktion.''  Sitzungsber. Akad. Wiss. Wien IIa 106,
  761-830, 1897.
 
Odlyzko, A. M. and te Riele, H. J. J.  ``Disproof of the Mertens Conjecture.''  J. reine angew. Math.
  357, 138-160, 1985.
 
Pintz, J.  ``An Effective Disproof of the Mertens Conjecture.''  Astérique 147-148, 325-333 and 346, 1987.
 
te Riele, H. J. J.  ``Some Historical and Other Notes About the Mertens Conjecture and Its Recent Disproof.''
  Nieuw Arch. Wisk. 3, 237-243, 1985.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein