| 
 | 
 | 
A function 
 which is one of the solutions to the Modified Bessel Differential Equation and is closely
related to the Bessel Function of the First Kind 
. The above plot shows 
 for 
, 2, ..., 5. In
terms of
,
| (1) | 
![]()  | 
(2) | 
| (3) | 
| (4) | 
A derivative identity for expressing higher order modified Bessel functions in terms of 
 is
| (5) | 
See also Bessel Function of the First Kind, Modified Bessel Function of the First Kind, Weber's Formula
References
Abramowitz, M. and Stegun, C. A. (Eds.).  ``Modified Bessel Functions  
Arfken, G.  ``Modified Bessel Functions,  
Finch, S.  ``Favorite Mathematical Constants.''  http://www.mathsoft.com/asolve/constant/cntfrc/cntfrc.html
 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T.  
  ``Bessel Functions of Fractional Order, Airy Functions, Spherical Bessel Functions.''  §6.7 in
  Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed.  Cambridge, England:
  Cambridge University Press, pp. 234-245, 1992.
 
Spanier, J. and Oldham, K. B.  ``The Hyperbolic Bessel Functions  
 and 
.''
  §9.6 in Handbook of Mathematical Functions with Formulas, 
  Graphs, and Mathematical Tables, 9th printing.  New York: Dover,
  pp. 374-377, 1972.
 and 
.''  §11.5 in
  Mathematical Methods for Physicists, 3rd ed.  Orlando, FL: Academic Press, pp. 610-616, 1985.
 and 
'' and
  ``The General Hyperbolic Bessel Function 
.''
  Chs. 49-50 in An Atlas of Functions.  Washington, DC: Hemisphere,
  pp. 479-487 and 489-497, 1987.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein