The modular equation of degree 
 gives an algebraic connection of the form
  | 
(1) | 
 
between the Transcendental Complete Elliptic Integrals of the First
Kind with moduli 
 and 
.  When 
 and 
 satisfy a modular equation, a
relationship of the form
  | 
(2) | 
 
exists, and 
 is called the Modular Function Multiplier. In general, if 
 is an Odd Prime, then the
modular equation is given by
  | 
(3) | 
 
where
![\begin{displaymath}
u_p\equiv (-1)^{(p^2-1)/8}[\lambda(q^p)]^{1/8}\equiv (-1)^{(p^2-1)/8}u(q^p),
\end{displaymath}](m_1438.gif)  | 
(4) | 
 
 is a Elliptic Lambda Function, and 
  | 
(5) | 
 
(Borwein and Borwein 1987, p. 126).  An Elliptic Integral identity gives
  | 
(6) | 
 
so the modular equation of degree 2 is
  | 
(7) | 
 
which can be written as
  | 
(8) | 
 
A few low order modular equations written in terms of 
 and 
 are
In terms of 
 and 
,
  | 
(14) | 
 
where
  | 
(15) | 
 
and
  | 
(16) | 
 
Here, 
 are Theta Functions.
A modular equation of degree 
 for 
 can be obtained by iterating the equation for 
.  Modular equations
for Prime 
 from 3 to 23 are given in Borwein and Borwein (1987).
Quadratic modular identities include
![\begin{displaymath}
{\vartheta _3(q)\over \vartheta _3(q^4)}-1=\left[{{{\vartheta _3}^2(q^2)\over {\vartheta _3}^2(q^4)}-1}\right]^{1/2}.
\end{displaymath}](m_1458.gif)  | 
(17) | 
 
Cubic identities include
![\begin{displaymath}
\left[{3 {\vartheta _2(q^9)\over \vartheta _2(q)}-1}\right]^3=9{{\vartheta _2}^4(q^3)\over {\vartheta _2}^4(q)}-1
\end{displaymath}](m_1459.gif)  | 
(18) | 
 
![\begin{displaymath}
\left[{3 {\vartheta _3(q^9)\over \vartheta _3(q)}-1}\right]^3=9{{\vartheta _3}^4(q^3)\over {\vartheta _3}^4(q)}-1
\end{displaymath}](m_1460.gif)  | 
(19) | 
 
![\begin{displaymath}
\left[{3 {\vartheta _4(q^9)\over \vartheta _4(q)}-1}\right]^3=9{{\vartheta _4}^4(q^3)\over {\vartheta _4}^4(q)}-1.
\end{displaymath}](m_1461.gif)  | 
(20) | 
 
A seventh-order identity is
  | 
(21) | 
 
From Ramanujan (1913-1914),
  | 
(22) | 
 
  | 
(23) | 
 
See also Schläfli's Modular Form
References
Borwein, J. M. and Borwein, P. B.  Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity.
  New York: Wiley, pp. 127-132, 1987.
Hanna, M.  ``The Modular Equations.''  Proc. London Math. Soc. 28, 46-52, 1928.
Ramanujan, S.  ``Modular Equations and Approximations to 
.''  Quart. J. Pure. Appl. Math. 45, 350-372, 1913-1914.
© 1996-9 Eric W. Weisstein 
1999-05-26