| 
 | 
 | 
A 
-multigrade equation is a Diophantine Equation of the form
Small-order examples are the (2, 3)-multigrade with
 and 
:
![]()  | 
![]()  | 
||
![]()  | 
![]()  | 
![]()  | 
![]()  | 
||
![]()  | 
![]()  | 
||
![]()  | 
![]()  | 
![]()  | 
![]()  | 
||
![]()  | 
![]()  | 
||
![]()  | 
![]()  | 
||
![]()  | 
![]()  | 
A spectacular example with 
 and 
 is given by 
 and
 (Guy 1994), which has sums
![]()  | 
![]()  | 
||
![]()  | 
![]()  | 
||
![]()  | 
![]()  | 
||
![]()  | 
![]()  | 
||
![]()  | 
![]()  | 
||
![]()  | 
![]()  | 
||
![]()  | 
![]()  | 
||
![]()  | 
![]()  | 
||
![]()  | 
![]()  | 
See also Diophantine Equation
References
Chen, S.  ``Equal Sums of Like Powers: On the Integer Solution of the Diophantine System.''
  http://www.nease.net/~chin/eslp/
 
Gloden, A.  Mehrgeradige Gleichungen.  Groningen, Netherlands: Noordhoff, 1944.
 
Gloden, A.  ``Sur la multigrade  
Guy, R. K.  Unsolved Problems in Number Theory, 2nd ed.  New York: Springer-Verlag, p. 143, 1994.
 
Kraitchik, M.  ``Multigrade.''  §3.10 in Mathematical Recreations.  New York: W. W. Norton, p. 79, 1942.
 
Madachy, J. S.  Madachy's Mathematical Recreations.  New York: Dover, pp. 171-173, 1979.
 
, 
, 
, 
, 
, 
, 
, 
, 
 (
, 3, 5, 7).''
  Revista Euclides 8, 383-384, 1948.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein