| 
 | 
 | 
If there is only one Critical Point, it must be the Extremum for functions of one variable.  There are
exceptions for two variables, but none of degree 
.  Such exceptions include
References
Ash, A. M. and Sexton, H.  ``A Surface with One Local Minimum.''  Math. Mag. 58, 147-149, 1985.
 
Calvert, B. and Vamanamurthy, M. K.  ``Local and Global Extrema for Functions of Several Variables.''
  J. Austral. Math. Soc. 29, 362-368, 1980.
 
Davies, R.  Solution to Problem 1235.  Math. Mag. 61, 59, 1988.
 
Wagon, S.  ``Failure of the Only-Critical-Point-in-Town Test.''  §3.4 in Mathematica in Action.
  New York: W. H. Freeman, pp. 87-91 and 228, 1991.