| 
 | 
 | 
A Rational Double Point of Conic Double Point type, known as ``
.''  An ordinary Double Point
is called a Node.  The above plot shows the curve 
, which has an
ordinary double point at the Origin.
A surface in complex 3-space admits at most finitely many ordinary double points.  The maximum possible number of
ordinary double points 
 for a surface of degree 
, 2, ..., are 0, 1, 4, 16, 31, 65, 
, 
, 
, 
, 
,
 ... (Sloane's A046001; Chmutov 1992, Endraß 1995).  The fact that 
 was proved by 
Beauville (1980), and 
 was proved by Jaffe and Ruberman (1994).  For 
, the following inequality
holds:
| Surface | ||
| 3 | 4 | Cayley Cubic | 
| 4 | 16 | Kummer Surface | 
| 5 | 31 | Dervish | 
| 6 | 65 | Barth Sextic | 
| 8 | 168 | Endraß Octic | 
| 10 | 345 | Barth Decic | 
See also Algebraic Surface, Barth Decic, Barth Sextic, Cayley Cubic, Cusp, Dervish, Endraß Octic, Kummer Surface, Rational Double Point
References
Basset, A. B.  ``The Maximum Number of Double Points on a Surface.''  Nature 73, 246, 1906.
 
Beauville, A.  ``Sur le nombre maximum de points doubles d'une surface dans  
Chmutov, S. V.  ``Examples of Projective Surfaces with Many Singularities.''  J. Algebraic Geom. 1, 191-196, 1992.
 
Endraß, S.  ``Surfaces with Many Ordinary Nodes.''
http://www.mathematik.uni-mainz.de/AlgebraischeGeometrie/docs/Eflaechen.shtml.
 
Endraß, S.  ``Flächen mit vielen Doppelpunkten.''  DMV-Mitteilungen 4, 17-20, Apr. 1995.
 
Endraß, S.  Symmetrische Fläche mit vielen gewöhnlichen Doppelpunkten.  Ph.D. thesis.  Erlangen, Germany, 1996.
 
Fischer, G. (Ed.).  Mathematical Models from the Collections of Universities and Museums.
  Braunschweig, Germany: Vieweg, pp. 12-13, 1986.
 
Jaffe, D. B. and Ruberman, D.  ``A Sextic Surface Cannot have 66 Nodes.''  J. Algebraic Geom. 6, 151-168, 1997.
 
Miyaoka, Y.  ``The Maximal Number of Quotient Singularities on Surfaces with Given Numerical Invariants.''  Math. Ann. 268,
  159-171, 1984.
 
Sloane, N. J. A.  Sequence 
A046001
in ``The On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html.
 
Togliatti, E. G.  ``Sulle superficie algebriche col massimo numero di punti doppi.''
  Rend. Sem. Mat. Torino 9, 47-59, 1950.
 
Varchenko, A. N.  ``On the Semicontinuity of Spectrum and an Upper Bound for the Number of Singular Points on a Projective Hypersurface.''
  Dokl. Acad. Nauk SSSR 270, 1309-1312, 1983.
 
Walker, R. J.  Algebraic Curves.  New York: Springer-Verlag, pp. 56-57, 1978.
 
 (
).''
  Journées de géométrie algébrique d'Angers (1979).  Sijthoff & Noordhoff, pp. 207-215, 1980.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein