| 
 | 
 | 
A primality certificate based on Fermat's Little Theorem Converse. Although the general idea had been well-established for some time, Pratt became the first to prove that the certificate tree was of polynomial size and could also be verified in polynomial time. He was also the first to observe that the tree implies that Primes are in the complexity class NP.
To generate a Pratt certificate, assume that 
 is a Positive Integer and 
 is the set of Prime
Factors of 
.  Suppose there exists an Integer 
 (called a ``Witness'') such that
 but 
 (mod 
) whenever 
 is one of 
. Then Fermat's Little Theorem
Converse states that 
 is Prime (Wagon 1991, pp. 278-279).  
By applying Fermat's Little Theorem Converse to 
and recursively to each purported factor of 
, a certificate for a given Prime Number can be generated. Stated
another way, the Pratt certificate gives a proof that a number 
 is a Primitive Root of the multiplicative
Group (mod 
) which, along with the fact that 
 has order 
, proves that 
 is a Prime.
The figure above gives a certificate for the primality of 
.  The numbers to the right of the dashes are
Witnesses to the numbers to left.  The set 
 for 
 is given by 
. Since
 but 
, 
, 
 (mod 7919), 7 is a Witness for
7919.  The Prime divisors of 
 are 2, 37, and 107.  2 is a so-called ``self-Witness'' (i.e., it is
recognized as a Prime without further ado), and the remainder of the witnesses are shown as a nested tree.  Together, they
certify that 7919 is indeed Prime.  Because it requires the Factorization of 
, the Method of Pratt
certificates is best applied to small numbers (or those numbers 
 known to have easily factorable 
).
A Pratt certificate is quicker to generate for small numbers than are other types of primality certificates. The Mathematica
 (Wolfram Research, Champaign, IL) task ProvablePrime[n] therefore generates an
Atkin-Goldwasser-Kilian-Morain Certificate only for numbers above a certain limit (
 by default), and a Pratt
certificate for smaller numbers.
See also Atkin-Goldwasser-Kilian-Morain Certificate, Fermat's Little Theorem Converse, Primality Certificate, Witness
References
Pratt, V.  ``Every Prime Has a Succinct Certificate.''  SIAM J. Comput. 4, 214-220, 1975.
 
Wagon, S.  Mathematica in Action.   New York: W. H. Freeman, pp. 278-285, 1991.
 
Wilf, H.  §4.10 in Algorithms and Complexity.  Englewood Cliffs, NJ: Prentice-Hall, 1986.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein