| 
 | 
 | 
For 
 and using the Notation of the Ramanujan Theta Function,
the Rogers-Ramanujan identities are
![]()  | 
(1) | 
![]()  | 
(2) | 
| (3) | 
| (4) | 
![]()  | 
(5) | 
Other forms of the Rogers-Ramanujan identities include
![]()  | 
(6) | 
![]()  | 
(7) | 
See also Andrews-Schur Identity
References
Andrews, G. E.  The Theory of Partitions.  Cambridge, England: Cambridge University Press, 1985.
 
Andrews, G. E.
   
Andrews, G. E. and Baxter, R. J.  ``A Motivated Proof of the Rogers-Ramanujan Identities.''  Amer. Math. Monthly 96, 401-409, 1989.
 
Bressoud, D. M.  Analytic and Combinatorial Generalizations of the Rogers-Ramanujan Identities.
  Providence, RI: Amer. Math. Soc., 1980.
 
Hardy, G. H.  Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed.  New York: Chelsea, p. 13, 1959.
 
Paule, P.  ``Short and Easy Computer Proofs of the Rogers-Ramanujan Identities and of Identities of Similar Type.''  Electronic J. Combinatorics 1, R10 1-9, 1994.
http://www.combinatorics.org/Volume_1/volume1.html#R10.
 
Petkovsek, M.;  Wilf, H. S.; and Zeilberger, D.  A=B.  Wellesley, MA: A. K. Peters, p. 117, 1996.
 
Robinson, R. M.  ``Comment to: `A Motivated Proof of the Rogers-Ramanujan Identities.'''  Amer. Math. Monthly 97, 214-215, 1990.
 
Rogers, L. J.  ``Second Memoir on the Expansion of Certain Infinite Products.''  Proc. London Math. Soc. 25, 318-343, 1894.
 
Sloane, N. J. A.  Sequence
A006141/M0260
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.
The Encyclopedia of Integer Sequences.  San Diego: Academic Press, 1995.
 
-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra.
  Providence, RI: Amer. Math. Soc., pp. 17-20, 1986.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein