| 
 | 
 | 
The smallest value 
 for a given 
 for which 
 (
 divides 
 Factorial).  For example, the number
8 does not divide 
, 
, 
, but does divide 
, so 
. For a Prime 
,
, and for an Even Perfect Number 
, 
 is Prime (Ashbacher 1997).
The Smarandache numbers for 
, 2, ... are 1, 2, 3, 4, 5, 3, 7, 4, 6, 5, 11, ... (Sloane's A002034).  Letting 
denote the smallest value of 
 for which 
, 2, ..., then 
 is given by 1, 2, 3, 4, 5, 9, 7, 32, 27, 25, 11,
243, ... (Sloane's A046021). Some values of 
 first occur only for very large 
, for example, 
,
, 
, 
, and 
.  D. Wilson points out that if we let
The incrementally largest values of 
 are 1, 2, 3, 4, 5, 7, 11, 13, 17, 19, 23, 29, ... (Sloane's A046022), which occur
for 
, 2, 3, 4, 5, 7, 11, 13, 17, 19, 23, 29, ... (Sloane's A046023), i.e., the values where 
.
Tutescu (1996) conjectures that the Diophantine Equation 
 has no solution.
See also Factorial, Greatest Prime Factor, Pseudosmarandache Function, Smarandache Ceil Function, Smarandache Constants, Smarandache-Kurepa Function, Smarandache Near-to-Primorial Function, Smarandache-Wagstaff Function
References
Ashbacher, C.  An Introduction to the Smarandache Function.  Cedar Rapids, IA: Decisionmark, 1995.
 
Ashbacher, C.  ``Problem 4616.''  School Sci. Math. 97, 221, 1997.
 
Begay, A.  ``Smarandache Ceil Functions.''  Bulletin Pure Appl. Sci. India 16E, 227-229, 1997.
 
Dumitrescu, C. and Seleacu, V.  The Smarandache Function.  Vail, AZ: Erhus University Press, 1996.
 
``Functions in Number Theory.''
  http://www.gallup.unm.edu/~smarandache/FUNCT1.TXT.
 
Ibstedt, H.  Surfing on the Ocean of Numbers--A Few Smarandache Notions and Similar Topics.
  Lupton, AZ: Erhus University Press, pp. 27-30, 1997.
 
Sandor, J.  ``On Certain Inequalities Involving the Smarandache Function.'' Abstracts of Papers Presented to the Amer. Math. Soc.
  17, 583, 1996.
 
Sloane, N. J. A.  Sequences 
A046021,
A046022,
A046023, and
A002034/M0453
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html.
 
Smarandache, F.  Collected Papers, Vol. 1.  Bucharest, Romania: Tempus, 1996.
 
Smarandache, F.  Collected Papers, Vol. 2.  Kishinev, Moldova: Kishinev University Press, 1997.
 
Tutescu, L.  ``On a Conjecture Concerning the Smarandache Function.'' Abstracts of Papers Presented to the Amer. Math. Soc.
  17, 583, 1996.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein