| 
 | 
 | 
The Wallis formula follows from the Infinite Product representation of the Sine
![]()  | 
(1) | 
![]()  | 
(2) | 
![]()  | 
(3) | 
![]()  | 
|||
| (4) | |||
![]()  | 
(5) | 
![]()  | 
|||
![]()  | 
(6) | 
| (7) | 
| 
 | 
|
| 
 | 
(8) | 
| (9) | 
The q-Analog of the Wallis formula for 
 is
![]()  | 
(10) | 
See also Wallis Cosine Formula, Wallis Sine Formula
References
Abramowitz, M. and Stegun, C. A. (Eds.).
  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
  New York: Dover, p. 258, 1972.
 
Finch, S.  ``Favorite Mathematical Constants.''  http://www.mathsoft.com/asolve/constant/dig/dig.html
 
Kenney, J. F. and Keeping, E. S.  Mathematics of Statistics, Pt. 2, 2nd ed. Princeton, NJ: Van Nostrand, pp. 63-64, 1951.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein