AI math handbook calculator - Fractional Calculus Computer Algebra System software 
 
 
 
 
 
 
Home  
 |  list  
 |  math  
 |  function  
 |  coding  
 |  graphics  
 |  example  
 |  help 
 | 中文 
 
 
 
 +   
 +   
 +  
 =  
 
 
 
  
Complex Function plot 
  
 
With this tool you can visualize complex-valued functions
 
 by assigning a color to each point in the complex plane 
  
 according to its argument/phase. 
  
 The identity function f(z)=z shows how colors are assigned.
Input box:
 
Enter any expression in z. Here are some example functions to try:
z 
arctan(z) 
re(arctan(z))  real part
im(arctan(z))  imag part
arctan(z-random()) 
z^4-1 
(z^2-i)/(i*z-1)^2 
sin(z)-e^(cos(z)) 
log(z)-sech(z-i) 
(z-1)(conj(z)^2-conj(z)-1) 
0.926(z-7.3857e-2*z^5-4.5458e-3*z^9) 
special function: gamma(z) , zeta(z) 
 Jacobi Elliptic: sn(z,0.3) , cn(z,0.3) , dn(z,0.3) 
 Taylor Series: cos(z)=sum((-1)^n*z^(2n)/(2n)!,7)  parameter must be n
 Atomic Singular Inner Function: prod(e^((z*(e^(2*pi*i/5))^n)/(z-(e^(2*pi*i/5))^n)),5)  parameter must be n
 Iterated function: iter(z-z'^2,z,15) 
Parameters: You can also use three parameters t,n,u in your function, e. g.
 
 t, where 0 ≤ t ≤ 1,
 u, where u = exp(i*s) and 0 ≤ s ≤ 2pi
 n, with 0 ≤ n ≤ 30
Zoom In/Out:
 
 Press button (+) to zoom in or (-) to zoom out. Alternatively use the mouse wheel. You can also change the view by dragging the plot.
Its independent variable must be z.
 put mouse on the graph to show 
  Mouse z: (re,im) on upper left and values of f(z): (re,im) on upper right.
function  :  
 random() , re(z) , im(z) , modulus(z) , arg(z) , recip(z) , neg(z) , conj(z) , disk(z) , floor(z) , ceil(z) , square(z) , cube(z) , sqrt(z) , exp(z) , log(z) , 
trig function : 
sin(z) , cos(z) , tan(z) , cot(z) , sec(z) , csc(z) , sinh(z) , cosh(z) , tanh(z) , coth(z) , sech(z) , csch(z) , 
 inverse trig function : 
asin(z) , acos(z) , atan(z) , acot(z) , asec(z) , acsc(z) , asinh(z) , acosh(z) , atanh(z) , acoth(z) , asech(z) , acsch(z) , 
arcsin(z) , arccos(z) , arctan(z) , arccot(z) , arcsec(z) , arccsc(z) , arcsinh(z) , arccosh(z) , arctanh(z) , arccoth(z) , arcsech(z) , arccsch(z) , 
 special function : 
gamma(z) , pow(z, 2) , rationalBlaschke(z, 2) , mobius(z, 2, 3, 4, 5) , psymbol(z, 2) , binet(z) , joukowsky(z, 2, 3) , zeta(z) , dirichletEta(z) , binomial(z, 2) , 
sn(z, 0.2) , cn(z, 0.2) , dn(z, 0.2) , sum(z, 2) , prod(z, 2) , blaschke(z, 2) , iter(z, z, 3) , 
Complex 
complex 
 - complex math 
complex2D
re2D(log(x))  show 2 curves of real and imag values in real domain.
im2D(log(x))  show 2 curves of real and imag values in imag domain.
  for complex 2 curves  of real and imag values in real and imag domain.
 complex coloring 
color WebXR  surface of complex function on complex plane
 complex animate (z) or complex2D(z)  for phase animation in complex plane, the independent variable must be z.
complex plot (z) for phase and/or modulus in complex plane, the independent variable must be z.
plot complex (z) for phase and/or modulus in complex plane, the independent variable must be z.
 
 complex3D
complex function 
Complex Branches 
Riemann surface 
complex3D (x) for 3 dimensional graph in real, imag and complex domain, where the independent variable must be x.
 
  
References 
math handbook content 2 chapter 10  complex function
 math handbook content 3 chapter 10  complex function
 math handbook content 4 chapter 10  complex function
 Complex analysis 
 
 
See Also