| 
 | 
 | 
An object created by Folding a piece of paper along certain lines to form loops. The number of states possible in an
-Flexagon is a Catalan Number.  By manipulating the folds, it is possible to hide and reveal
different faces.
See also Flexatube, Folding, Hexaflexagon, Tetraflexagon
References
 
Crampin, J.  ``On Note 2449.''  Math. Gazette 41, 55-56, 1957.
 
Cundy, H. and Rollett, A.  Mathematical Models, 3rd ed.  Stradbroke, England: Tarquin Pub., pp. 205-207, 1989.
 
Madachy, J. S.  Madachy's Mathematical Recreations.  New York: Dover, pp. 62-84, 1979.
 
Gardner, M.  ``Hexaflexagons.'' Ch. 1 in The Scientific American Book of Mathematical Puzzles & Diversions.
  New York: Simon and Schuster, 1959.
 
Gardner, M.  Ch. 2 in The Second Scientific American Book of Mathematical Puzzles & Diversions: A New Selection. 
  New York: Simon and Schuster, pp. 24-31, 1961.
 
Maunsell, F. G.  ``The Flexagon and the Hexaflexagon.''  Math. Gazette 38, 213-214, 1954.
 
Oakley, C. O. and Wisner, R. J.  ``Flexagons.''  Amer. Math. Monthly 64, 143-154, 1957.
 
Wheeler, R. F.  ``The Flexagon Family.''  Math. Gaz. 42, 1-6, 1958.
 
 Flexagons